Reference No.: 64

Barite Hill/Nevada Goldfields EPA ID No. SCN000407714

Project Note							
Date: January 8, 2008	Project Number: TTEMI-05-003-0019						
Name: Shanna Davis Firm: Tetra Tech EM Inc. Title: Environmental Scientist							
Signature: (Shanna Dau	<u>is</u>						
Subject: Summary of J-Qualified Data							
The analytical results presented in the tabl McCormick, McCormick County, South C Environmental Control (SCDHEC) during	PROJECT NOTE SUMMARY le in the following pages are for samples collected at the Barite Hill property in Carolina. The samples were collected by South Carolina Department of Health and g the 2004 preliminary assessment/site investigation (PA/SI), by Response AC) during the 2007 removal site evaluation (RSE), and by Tetra Tech during the						
	ng the 2004 PA/SI were analyzed by the Environmental Protection Agency (EPA) to Division (SESD). Data validation was conducted by EPA Region 4 SESD.						
	he 2007 RSE as well as the samples collected by Tetra Tech during the 2007 ESI aboratory Program. Data validation for both sampling events was conducted by						
The explanations used to determine the bi Reference 61.	ias direction for the "J"-flagged estimated analytical results are presented in						
	SI, RSE, and ESI were adjusted according to guidance presented in the EPA fact an Observed Release and Observed Contamination" dated November 1996 (Ref.						
The determination of the bias direction wa	as obtained form the EPA Region 4, SESD, Office of Quality Assurance.						
A Tetra Tech chemist provided the bias di	irections for the following data qualifiers.						
known amount spiked into the PE sample	valuation (PE) sample recovery greater than control limits – The recovery of the was greater than the control limits; therefore, the instrument is reading more present. High bias is indicated (see Ref. 40, Appendix E, pp. 1 of 160, 3 of 160).						
	overy outside warning limits – The recovery of the known amount spiked into the mits; therefore, the instrument is reading more analyte in the sample than is known Ref. 56, pp. 1, 3).						
detected, but at a level below the MRL est	limit (MDL) but less than the method reporting limit (MRL) - The result was tablished from the confidence level stated in the analytical method. Therefore, the gher or lower than the result reported. Bias is unknown.						
	RESPONSE REQUIRED						
(x) None	() Phone call () Memo () Letter () Report						
cc: File(x) Project Man	nager () Principal Investigator () Other (specify)						

Summary of J Qualified Data

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					Low bias is applied to be conservative	
RSE	BH-247-7 Background	Sediment	Copper	30J	Refs. 56, pp. 2, 3, 8, 73; 61, p. 2; 62, pp. 8, 18; 63, p. 20	$30 \times 1.22 = 36.60$
	BH-247-7				Serial dilution precision outside method control limits = 19% Unknown Bias Ref. 56, pp. 3, 8, 73; 61, p. 1;	
RSE	Background	Sediment	Zinc	47J	62, pp. 8, 18; 63, p. 20	$47J \times 1.5 = 70.50$
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
RSE	BH247-6 Release	Sediment	Copper	300J	Refs. 56, pp. 2, 3, 8, 71; 61, p. 2; 62, pp. 8, 18; 63, p. 20	$300 \div 1.22 = 245.90$
					PE sample recovery outside warning limits	
					High Bias (see page 1 of this project note)	
RSE	BH247-8 Release	Sediment	Copper	540J	Refs. 56, pp. 3, 8, 75; 62, pp. 8, 18; 63, p. 22	540 ÷ 1.22 = 442.62

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
RSE	BH247-13 Release	Sediment	Copper	3,700J	Refs. 56, pp. 2, 3, 8, 37; 61, p. 2; 62, pp. 8, 18; 63, p. 18	$3,700 \div 1.22 = 3,032.79$
					Serial dilution precision outside method control limits = 19% Unknown Bias	
RSE	BH247-13 Release	Sediment	Zinc	1,300J	Ref. 56, pp. 3, 8, 37; 61, p. 1; 62, pp. 8, 18; 63, p. 18	1,300J ÷ 1.5 = 866.67
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
RSE	BH247-19 Release	Sediment	Copper	300J	Refs. 56, pp. 2, 3, 8, 43; 61, p. 2; 62, pp. 8, 18; 63, p. 18	300 ÷ 1.22 = 245.90
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
RSE	BH247-25 Release	Sediment	Copper	180J	Refs. 56, pp. 2, 3, 8, 51; 61, p. 2; 62, pp. 8, 18; 63, p. 19	180 ÷ 1.22 = 147.54

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
	BH247-525		_		Refs. 56, pp. 2, 3, 8, 67; 61, p.	200 ÷ 1.22 =
RSE	Release	Sediment	Copper	200J	2; 62, pp. 8, 18; 63, p. 20	163.93
					Matrix spike recovery less than 10% - Low Bias	
					PE sample recovery outside warning limits – High Bias (see page 1 of this project note)	
					High bias is applied to be conservative	
	BH247-27	2472			Refs. 56, pp. 2, 3, 8, 55; 61, p.	220 ÷ 1.22 =
RSE	Release	Sediment	Copper	220J	2; 62, pp. 8, 18; 63, p. 19	180.33
					PE sample recovery greater	
					than control limits	
					High Bias (see page 1 of this project note)	
					No adjustment needed	
					Refs. 40, Appendix E, pp. 3 of	
	BH-SD-01	9001 NAME 10	0380	170 o 200 (180 c)	160, 8 of 160, and 12 of 160;	10 13 00449 (April
ESI	Background	Sediment	Copper	160J	62, p. 8	160

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
					No adjustment needed	
985 No. of 1900	BH-SD-02	PROG. Services S	01.60	000000	Refs. 40, Appendix E, pp. 3 of 160, 8 of 160, and 14 of 160;	ottonia/Cit
ESI	Background	Sediment	Copper	29J	62, p. 8	29
					Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits = 15% - Unknown Bias	
ESI	BH-SD-03 Background	Sediment	Lead	14J	Refs. 40, Appendix E, pp. 2 of 160, 8 of 160, 16 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 3	$14 \times 1.44 = 20.16$
					Result greater than MDL but less than MRL	
					Unknown Bias (see page 1 of this project note)	
	BH-SD-03				Ref. 40, Appendix E, pp. 8 of	
ESI	Background	Sediment	Nickel	8.5J	160, 16 of 160; 61, p. 1; 62, pp. 8, 18	$8.5 \times 1.35 = 11.48$
		2,3411			Serial dilution precision outside method control limits = 34%	
					Unknown Bias	
	BH-SD-03				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 16 of 160; 61, p.	
ESI	Background	Sediment	Zinc	54J	1; 62, pp. 8, 18; 63, p. 3	$54 \times 1.50 = 81$

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
					No adjustment needed	
80000 at 1000	BH-SD-08				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 26 of 160; 62, p.	
ESI	Background	Sediment	Copper	19 J	8	19
		,			Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits = 15% - Unknown Bias	
ESI	BH-SD-08 Background	Sediment	Lead	29J	Refs. 40, Appendix E, pp. 2 of 160, 8 of 160, 26 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 3	29 × 1.44 = 41.76
	Buckground	Seament	Doug	223	Result greater than MDL but less than MRL	25.1.11.70
					Unknown Bias (see page 1 of this project note)	
	BH-SD-08				Ref. 40, Appendix E, pp. 8 of	0.0 1.25
ESI	Background	Sediment	Nickel	8.9J	160, 26 of 160; 61, p. 1; 62, pp. 8, 18	$8.9 \times 1.35 = 12.02$
					Serial dilution precision outside method control limits = 34%	
					Unknown Bias	
	BH-SD-08				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 26 of 160; 61, p.	
ESI	Background	Sediment	Zinc	53J	1; 62, pp. 8, 18; 63, p. 3	$53 \times 1.5 = 79.5$

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-05				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 20 of 160; 62,	810 ÷ 1.22 =
ESI	Release	Sediment	Copper	810 J	pp. 8, 18	663.93
		*			PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-07				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 24 of 160; 62,	1,100 ÷ 1.22 =
ESI	Release	Sediment	Copper	1,100J	pp. 8, 18	901.64
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-11				Ref. 40, Appendix E, pp. 3 of	670 - 1 22 -
ESI	Release	Sediment	Copper	670J	160, 8 of 160, 34 of 160; 62, pp. 8, 18; 63, p. 4	670 ÷ 1.22 = 549.18
					Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits =	
					15% - Unknown Bias	
					Unknown bias is applied to be conservative	
	DILCD 11				Refs. 40, Appendix E, pp. 2 of	
ESI	BH-SD-11 Release	Sediment	Lead	220J	160, 8 of 160, 34 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 4	220 ÷ 1.44 = 152.78

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
ESI	BH-SD-12 Release	Sediment	Copper	950J	Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 36 of 160; 62, pp. 8, 18	950 ÷ 1.22 = 778.69
		*			Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits = 15% - Unknown Bias	
					Unknown bias is applied to be conservative	
ESI	BH-SD-12 Release	Sediment	Lead	210J	Refs. 40, Appendix E, pp. 2 of 160, 8 of 160, 36 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 4	210 ÷ 1.44 = 145.83
With the second				The second secon	Serial dilution precision outside method control limits = 34%	
					Unknown Bias	
ESI	BH-SD-12 Release	Sediment	Zinc	1,300J	Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 36 of 160; 61, p. 1; 62, pp. 8, 18; 63, p. 4	1,300 ÷ 1.5 = 866.67
3	E. I	*			PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-13				Ref. 40, Appendix E, pp. 3 of	1 400 + 1 22 -
ESI	Release	Sediment	Copper	1,400J	160, 8 of 160, 38 of 160; 62, pp. 8, 18	$ 1,400 \div 1.22 = 1,147.54 $

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits = 15% - Unknown Bias	
					Unknown bias is applied to be conservative	
ESI	BH-SD-13 Release	Sediment	Lead	240J	Refs. 40, Appendix E, pp. 2 of 160, 8 of 160, 38 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 4	240 ÷ 1.44 = 166.67
		3	No.		Result greater than MDL but less than MRL	
					Unknown Bias (see page 1 of this project note)	
ESI	BH-SD-13 Release	Sediment	Nickel	90J	Ref. 40, Appendix E, pp. 8 of 160, 38 of 160; 61, p. 1; 62, pp. 8, 18	90 ÷ 1.35 = 66.67
wisosztore			300 A 300 B 40 P 40 P		Serial dilution precision outside method control limits = 34%	0.000.00
					Unknown Bias	
ESI	BH-SD-13 Release	Sediment	Zinc	640 J	Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 38 of 160; 61, p. 1; 62, pp. 8, 18; 63, p. 4	640 ÷ 1.5 = 426.67
		×			PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-14				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 40 of 160; 62,	220 ÷ 1.22 =
ESI	Release	Sediment	Copper	220J	pp. 8, 18	180.33

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	BH-SD-15				Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 42 of 160; 62,	340 ÷ 1.22 =
ESI	Release	Sediment	Copper	340J	pp. 8, 18	278.69
					Matrix spike recovery less than method control limits = 39% - Low Bias	
					Serial dilution precision outside method control limits = 15% - Unknown Bias	
					Unknown bias is applied to be conservative	
	BH-SD-15				Refs. 40, Appendix E, pp. 2 of	270 1.44
ESI	Release	Sediment	Lead	270Ј	160, 8 of 160, 42 of 160; 61, pp. 1, 2; 62, pp. 8, 18; 63, p. 4	270 ÷ 1.44 = 187.50
					PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
ESI	BH-SD-16 Release	Sediment	Copper	3,200J	Ref. 40, Appendix E, pp. 3 of 160, 8 of 160, 44 of 160; 62, pp. 8, 18	3,200 ÷ 1.22 = 2,622.95
		*			PE sample recovery greater than control limits	
					High Bias (see page 1 of this project note)	
	DIL CD 17				Ref. 40, Appendix E, pp. 3 of	
ESI	BH-SD-17 Release	Sediment	Copper	5,900J	160, 8 of 160, 46 of 160; 62, pp. 8, 18	5,900 ÷ 1.22 = 4,836.07

Investigation	Sample ID/Type of Sample	Sample Media	Hazardous Substance	Concentration	Bias Type	Calculation and Concentration (mg/kg)
					Matrix precision outside method acceptance criteria	
					Matrix spike precision outside guidance levels	
					To be conservative an unknown bias is assumed	
PA/SI	BH-019-SO	Soil	Arsenic	39AJ	Ref. 50, p. 66; 62, pp. 8, 18	$39 \div 1.74 = 22.41$
		}			Matrix spike precision outside guidance levels	
					To be conservative an unknown bias is assumed	
PA/SI	BH-019-SO	Soil	Copper	96AJ	Ref. 50, p. 66; 62, pp. 8, 18	$96 \div 1.22 = 78.69$

Notes:

J Analyte analyzed in replicate. Reported value is average of replicates. ESI Expanded site inspection (conducted by Tetra Tech in June 2007)

ID Identification

J Identification of analyte is acceptable; reported value is an estimate

MDL Method detection limit MRL Minimum reporting limit

PA/SI Preliminary assessment/site inspection (conducted by SCDHEC in September 2004)

PE Performance evaluation

REAC Response Engineering and Analytical Contract

RSE Removal site evaluation (conducted by REAC in March 2007)
SCDHEC South Carolina Department of Health and Environmental Control

SD Sediment

